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Abstract— One of the European Bioinformatics Institute’s 
core objectives is to provide long-lasting and freely available life 
science data resources. In 2008, several of the fastest growing 
data resources had reached 80TB and to support their continued 
and accelerating growth, a software-defined File Replication 
system (FIRE) was created. The system capacity has grown 
from archiving 20TB a year in 2008 to 10PB a year in 2019, while 
also providing access to almost all that data, to a constantly 
growing research community, through permanent URLs. 
Whilst the initial system relied on NFS storage to replicate its 
data, it has transitioned in several stages to using tape systems 
and geo-dispersed object storage, to support the continuous data 
growth, which at current projections is expected to reach the 
Exabyte milestone before 2030. The challenges faced by such a 
system are introduced and the implementation changes during 
different phases of the project are shared, together with the 
lessons learned over the past 12 years while providing a 
continually evolving system to the present day. 
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I. INTRODUCTION  
EMBL’s European Bioinformatics Institute (EMBL-EBI) is 
the world’s leading sources of biological and biomolecular 
data. Its core mission is to enable life science research and its 
translation to medicine, agriculture, industry and society by 
providing biological data, tools and knowledge. EMBL-EBI 
is Part of the European Molecular Biology Laboratory 
(EMBL), an open science intergovernmental organisation [1]. 
Since the EMBL-EBI opened in 1994, data volumes have 
increased year on year and technology changes have driven a 
huge increase in biological data diversity. By 2018, EMBL-
EBI was hosting over 40 different biomolecular databases, 
with data content spanning genomic and metagenomic data 
(DNA, RNA and protein) and structures as well as 
proteomics, metabolomics, bioactive molecules, 
macromolecular complexes, systems, pathways, ontologies, 
scientific literature and light and electron microscopy 
imaging data [2]. 

Data access and demand from the world’s researchers also 
continues to increase significantly. In 2018 for example, the 
average number of daily requests to EMBL-EBI websites 
almost doubled from the previous year, to 64 million [3]. To 
underpin these requirements, EMBL-EBI manages an 
infrastructure of extensive, high-performance and high-
throughput compute infrastructure along with large data-
storage capacity [4]. The hardware is dispersed across three 
discrete data centres in different geographical locations to 
assure long-term security. The internal network has a 100 
Gigabit backbone within its data centres and multiple 
redundant 100 Gigabit connections between data centres and 
to Janet, Internet2 and Geant (the UK, pan-American and pan-
European research networks, respectively). 

A. Long term archives with specific needs 
The world’s first public nucleotide sequence database: the 

EMBL Nucleotide Sequence Data Library, now EMBL Bank, 
part of the European Nucleotide Archive, was established in 
1980 to be a central database of DNA sequences abstracted 
from scientific literature as a resource for research. Demand 
quickly grew and researchers began submitting data directly, 
with the project evolving into a major database activity with 
highly skilled informaticians managing the activity. To ensure 
continued capacity for rapid growth and secure storage for 
some of the most rapidly growing deposition databases at 
EMBL-EBI a new storage solution FIRE - the File Replication 
Service was conceived in 2008 and is still in use today. It 
stores data for two of the largest archives at EMBL-EBI, ENA 
and EGA, together with 3 smaller DNA-based archives and a 
rapidly increasing new bio-image archive. 

1) European Nucleotide Archive (ENA) 
ENA provides a comprehensive record of the world's 

nucleotide sequencing information, covering raw sequencing 
data, sequence assembly information and functional 
annotation. Data arrive at ENA from a variety of world-wide 
sources. Access to ENA data in standard formats is provided 
via a browser, through search tools, large scale file download 



and via the API and embodies the FAIR Data Principles which 
promotes published data to be Findable, Accessible, 
Interoperable and Reusable [5]. Most data are fully public and 
available for anonymous download, while a subset of new 
datasets will be embargoed for a short time - only available to 
selected authenticated people.  

2) European Genome-phenome Archive (EGA) 
The EGA is a service for permanent archiving and sharing 

of all types of personally identifiable genetic and phenotypic 
data resulting from biomedical research projects and data 
access requires prior ethical agreement to be in place [6]. Data 
are stored at rest encrypted and while access to EGA data is 
provided using similar methods to ENA, but all data leaves 
EMBL-EBI re-encrypted and requiring unique decryption 
keys that only EGA can provide to the authorised individual. 

B. Archive types and requirements 
 Traditional computational storage archives may categorise 
as follows:  

• Cold archive - usually low-cost tape archive. Access is 
not direct and requires some mechanical actions before 
being online. Usually for Disaster Recovery (DR) 
purposes. 

• Active archive - also called storage tiering. When data 
value or user interest is known, data are placed on the 
most appropriate storage to maximize cost-benefit 
between ease of user access and storage cost.  

• Governance archive - driven by regulatory compliance 
and/or a desire to be prepared for discovery in legal 
proceedings, with stringent requirements and SLAs. 
Vendor contracts tend to be complex and the user 
experience is often an afterthought. 

However, the long term archival requirements of ENA and 
EGA, (as well as other EMBL-EBI archives), fall somewhere 
in between these traditional archive categories, creating an 
aggregate requirement to have two archives with one central 
point of access; one archive being actively accessed; the other 
providing a disaster recovery facility to guard our mandate to 
store open data long term on behalf of worldwide 
communities. Good practices require that there is no vendor 
lock-in or single technology dependency on the solution used 
to save and serve the data, mitigating the scenario in which 
data archivers lose control and ownership of the data as a 
result of changes to restrictive licensing and commercial 
interests. Physical infrastructure risks are also taken into 
account, requiring data to be replicated in distant locations, to 
survive a disaster affecting any one of those locations. In the 
case of ENA, this extends beyond EMBL-EBI holdings to 
other International Nucleotide Sequence Database 
Collaboration (INSDC) [7] partners. Thus, the chosen solution 
needs to maintain two internal archives, while appearing as a 
single unified interface to the users. Those same users, (e.g. 
ENA and EGA), also require the presentation layer of the 
archive to be POSIX [8] compliant, available from the EMBL-
EBI data centre compute clusters as well as usable to present 
the data to the outside world through standard FTP and other 
transfer protocols. As the archive is in constant use, high 
availability is also a key requirement. In addition to being 
resilient to hardware failure, the system also has to enable the 
seamless addition of new back-end storage systems. 

C. The challenge of predicting growth rates 
At the end of 2008 the total size of ENA was in the region 

of 100TB [9] and was growing at a rate of 200% each year. As 
data are not generated locally and come from a huge range of 
resources, forecasting growth rates has proven to be inexact. 
At that time EGA was experiencing similar growth. As of the 
end of 2019 the average growth in the past 10 years has been 
around 90% (see Fig 1), with a 42% growth in 2019. With 
other public archives starting to use FIRE the growth expected 
for 2020, in terms of archived data, is around 55%, including 
the organic growth of the existing archives.  

D. Scaling egress 
EMBL-EBI is a global hub for life science data, which 

means that once data have been received, processed, and value 
added (e.g. by addition of metadata, cross-references etc.), 
data are made available for redistribution to the global life 
science community. Since some institutions still download 
copies of all the data published, and many thousands of 
distinct individual data downloads occur every single day, it 
can be expected that for every petabyte of data stored in FIRE, 
many more petabytes of data download capacity will need to 
be supported (i.e. every item of data will be downloaded more 
than once during its lifetime). 

E. Cost of ownership and predicting the long-term re-use 
value of data 
The nature of EMBL-EBI’s grant-based infrastructure 

funding requires it to put out tenders for data centre space 
every few years, potentially leading to regular physical 
migration between locations. Reducing the downtime during 
these transitions requires data to be accessible in more than 
one place at once. Having data available (cold archive data are 
not considered as available in this context) in at least two data 
centres simultaneously forces the infrastructure to be 
replicated with an associated increase in cost.  

An alternative storage model for ‘active tiering’ – the 
Hierarchical Storage Management (HSM) system is aimed at 
reducing costs for an active archive, by transparently tiering 
the data over several storage layers, each with different 
performance and cost characteristics, moving the less 
accessed data away from its original location into less 
performant cheaper internal storage tiers, depending on usage 
policies. However, implementing an HSM system efficiently 
requires the ability to establish data access patterns. over a 
long tail distribution, where data in the tail of the graph would 
be moved to slower and cheaper storage systems. However, in 
the case of life sciences data, ‘the long tail’ may in fact 
represent the mainstream research [10].  

The ‘value’ (and likelihood of access) of a particular 
dataset cannot purely be predicted by its age in the archive 
(e.g. last in first out) as value depends on scientific context 
[11] and this can be changed by multiple factors. Some data 
may gain interest at any point in time, with triggers as diverse 
as newly developed tools, a virus outbreak, a publication, a 
need to compare with a newly generated dataset. Datasets used 
as reference data for particular analyses may continue to hold 
interest for extended periods (e.g. the 1000Genomes dataset 
[9]), leading to repeated downloads. Depending on the size of 
the data and the number of downloaders, those triggers could 
potentially pose a risk to the infrastructure. With new data 
continually reaching the public domain and old data being 
reused unpredictably an HSM solution was deemed 
impractical and the approach chosen was to store data on a 



 

 

 

 

 

 

 

 

 

 
Fig. 1. Growth of Data Projects in FIRE 

spinning disk copy and ensure its continual availability via a 
variety of file transfer protocols. 

F. Storage lifecycle  
Due to the long-term nature of the archive, many 

publications reference datasets and files directly or through 
specific archive proxies. To allow those links to remain valid 
over the years, even as underlying storage changed, the 
solution had to provide a lasting way to reach the archived 
objects, while ensuring immutability of those objects.  

II. FIRE, A DUAL ARCHIVE SERVICE PROVIDED BY 
EMBL-EBI SINCE 2008 

To summarise, EMBL-EBI needed a data archive solution 
that would scale continuously over many years in line with the 
data size; have high availability and resiliency; be abstracted 
from the underlying hardware to prevent vendor lock-in and 
disruption at the end of hardware lifecycles; be geo-dispersed 
in at least two data centres, use a mix of storage types to 
provide optimum user access, different technologies and cost-
benefit, and allow POSIX-compliant file presentation. To 
fulfil these essential criteria, the File Replication Service 
(FIRE) was designed and brought into production. 

A. Phase 1 implementation- 2008 to 2018, when nothing 
fits your needs  
The FIRE project was started in 2008. At that time no 

mature solution was identified that could ensure an affordable 
Total Cost of Ownership (TCO) in the long run, so the EMBL-
EBI Systems and Networking Teams developed an automated 
file replication mechanism that could be used by the biggest 
EMBL-EBI public archives which were already struggling 
with their growth and storage requirements. This solution is 
now referred to as the phase 1 implementation.  

1) Data access 
To fulfil the requirement of a storage system usable by the 

already existing pipelines and workflows, the team of that 
time decided to ensure the solution could be presented with a 
POSIX-compliant filesystem implementation. This FUSE 
implementation required root access to the servers accessing 
the data. This allowed a granular control on what data was 
presented inside the EMBL-EBI, and by using that internal 
presentation of data through already existing communication 
protocols (i.e. FTP, Aspera, HTTP), leveraged the 
authentication and authorization of those services obviating 
the need to implement another layer of authentication on the 
FIRE solution itself. 

2) Archival process and shared ownership  
Incoming data were uploaded to the EMBL-EBI 

infrastructure using communication protocols such as FTP or 
FASP (Aspera) and then enter a data-specific workflow of 
validation, tagging and curation to ensure contents meet the 
defined requirements. By the end of the workflow the archiver 
issued archival actions in an database table inside a project-
specific database shared with the FIRE infrastructure. 

Each data project also required the following FIRE 
components:  

• Python-based daemon scheduled to pull new archival 
actions from the project-specific database. This 
daemon inserted new FIRE actions in the internal 
FIRE database. The daemon also created action 
specific jobs in the FIRE owned batch processing 
cluster based in LSF [12].  

• Project-specific staging area isolating project specific 
IO operations. The resulting absence of shared IOPS 
among projects reduced the need for quality of service 
mechanisms. The staging could be co-located 
depending on each project workflow location and 
mounted only by the FIRE LSF hosts in that data 
centre. 

• Although a specific LSF host was not required for each 
project, an internal batch queue was, ensuring that LSF 
actions would only be consumed by the hosts 
mounting the staging areas from the same data centre, 
preventing unnecessary cross-data centre traffic 
wherever possible. 

The LSF jobs processed the FIRE actions, represented by 
a series of IO and metadata events, tracking each action with 
different states. Once the FIRE actions finished the last steps 
updated the internal FIRE database and the project database 
and removed the archived file from the staging area when 
necessary. In the event of a failure specific exit codes ensured 
LSF resubmission. 

3) Disaster recovery and data migration 
 As seen in Fig 2 below, the phase 1 FIRE implementation 
uses two different datastores (A and B) to store the same data. 
To mitigate the risk of data being corrupted because of a 
hardware or firmware failure, this data replication is done 
using storage platforms from different vendors. To mitigate 
the risk of data loss due major disasters the datastores are 
located in different data centres. With this replication in place, 
recovery from a disaster preventing data access to one of the 
datastores requires replication of all data from the online 
datastore to a newly installed datastore, thus restoring the 
replication level to pre-disaster levels.  

1) Breaking away from the hardware lifecycle 
FIRE has been designed with the ability to copy data from 

one datastore to another, for disaster recovery; however, this 
ability is more often used to migrate data inside a datastore. 
When a storage element needs to be retired data are moved 
into the newly installed storage, and this transition is 
transparent to users. To enable full control of the data and its 
replica locations, FIRE provides an external file object 
Identifier (OID) to the user, while managing the replicas of 
that file individually with as many internal OIDs are needed 
at any point in time. The external OID is fixed for the whole 
live of the file, while the internal OIDs, usually one for each 

 



datastore, change every time the file is moved to a new storage 
element.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Diagrammatic representation of FIRE – Phase 1 implementation 
showing data flow 

During the migration process, each file being migrated 
gains one extra internal OID, the file will be copied and 
validated from one of the existing replicas. The last step of the 
process removes the old replica and its references to the 
external OID thus ensuring no existing data consumer tracks 
that data have physically moved. 

B. Phase 2 - Cost reduction by Introduction of Tape-based 
archive 
Over time, the biggest data projects like ENA and EGA 

showed location-specific access patterns (i.e. predominantly 
one datacentre), allowing the non-accessed replica to be 
moved into its own cold archive. An in-house Object Tape 
Archive mechanism, known as OTA, was built, operating as 
an object store onto which existing data for those specific 
projects was migrated. This object store added some 
complexity to the FIRE solution but reduced the total cost of 
ownership for the overall solution due to the lower running 
and maintenance costs of tape compared to spinning disks.  

Tape requires data to be sent to it as a stream, and the 
streaming rate needs to be sufficient to meet optimal 
performance for the write operations. As it would be difficult 
for the archives to control such a data stream, a buffer was put 
in place. This comprised a 250TB lustre filesystem, where 
data were written by the OTA object store endpoints and 
internal mechanisms then bundled it before being sent to tape 
using a single tar data stream. This move to tape brought one 
important limitation. While the archival process, from FIRE 
perspective, considered the data sent to OTA as replicated, it 
would not be written to tape until the expected file resulting 
from the tar operation would be big enough to fill at least 90% 
of a tape.  

Years after the initial implementation of OTA, all the 
existing data projects were migrated, allowing the retirement 

of all spinning disk on one of the replicas by replacing it by 
OTA.  

C. Phase 3 - Third data centre and geo-dispersed storage 
During 2015, EMBL-EBI acquired a third data centre, and 

FIRE was extended to deploy a 5PB Cleversafe geo-dispersed 
object store. This had the effect that any data stored on such 
object storage was locally fetchable by the bespoke FUSE 
implementation, meaning that the POSIX compliant file 
system was now available from all data centres, although only 
two of them were publicly accessible. This geo-dispersed 
storage was used from that point onwards as the back-end for 
what from that point onwards we would call the primary (or 
active) replica, with the secondary replica moved to the OTA 
(tape) system which de facto is a cold archive inside the FIRE 
active archive. 

Geo-dispersed storage like Cleversafe or similar 
implementations, have internal algorithms responsible for 
distributing stored data over multiple data centres providing 
resilience, and allowing data to be readable even if one of the 
data centres is not available. This high availability mechanism 
allows upgrades and scheduled maintenance execution 
without disruption for the end user, while providing a 
consistent presentation layer on all data centres. Object 
storage also has the added benefit of using HTTP to read and 
write the data, while the previous storage used required 
mounting by the root user over NFS. The benefits of not 
requiring a kernel-based module like NFS, are many and will 
be discussed in the next sections. 

Positive cost benefit analysis of the new IBM Cleversafe 
geo-dispersed solution, led to the purchase of new geo-
dispersed storage to extend, and later replace, the first one. 
This has become a regular procedure and today FIRE operates 
on three Western Digital Activescale X100 systems (also 
known as HGST) aggregating 40PB of usable space, and the 
original Cleversafe has already been retired.  

D. Phase 4 - 2017 to 2021 - Transition to standard REST 
After the risk of loss of a data centre was mitigated by using 
geo-dispersed object storage as the primary replica of all 
existing archives, a decision was made to increase the 
serviceability of the FIRE solution. Until this point, any new 
user project for FIRE replication methodology required its 
own staging area and project databases, which also required 
bespoke development and infrastructure integration with their 
pipelines. As the primary replica was already compatible with 
the Amazon S3 REST application programming interface 
(API) it was a logical step to offer similar REST API access 
to users. With some users already requesting REST access to 
FIRE, the impetus provided by two new funded large data 
projects drove work on the creation of a new REST API. 
 

1) Maintaining two infrastructures 
With the expectation that transitioning research pipelines 

from the existing database-based API to the new REST API 
was likely to take more than one year, a new monitoring tool 
was deployed for basic monitoring on all servers related to 
FIRE. The Open Monitoring Distribution (OMD [13]) was 
chosen as it leverages Check_mk [14] as the server agent and 
monitors over 30 items by default, including CPU load, mount 
points, and network interfaces. OMD provided a bird’s eye 
view on the existing complex infrastructure, highlighting 
several bottlenecks, and allowed the team to invest time in the 

 
	1) User uploads data to 'Project staging area' through FTP or Aspera  
2) Each project validates/prepares the uploaded files before they are 
listed to be archived in the 'Project database' 
3) 'FIRE daemon' detects new actions in the 'Project database' and will 
create all necessary jobs and internal actions for each of them 
4) 'FIRE LSF farm' will pull files from 'Project staging areas' and write 
to both Data stores, A & B, and update the 'Project database' on 
success 
5) 'FIRE database' will contain and track all the actions and files 
 



new infrastructure, while focusing only on relevant 
maintenance of the existing infrastructure.  

The original infrastructure included the following 
components: 

• 10 LSF servers in data centre A and 6 in data centre B. 

• 2 servers providing access to the tape libraries (Spectra 
T950 and IBM T4500)  

• 14 Gbps Brocade SAN switch to connect the tape 
libraries 

• 1 Oracle database for FIRE and a standby in a second 
data centre for DR 

• 1 Oracle database for OTA and a standby in a second 
data centre for DR 

• 5 staging areas, one per data project, mounted by the 
LSF servers of the same data centre 

• 13 PB of data replicated in Object Store and tape 

• 2 metadata servers for FUSE filesystem access on each 
data centre 

The new REST API particularly benefitted new users by 
lowering the entrance barrier. While existing data project 
users were able to archive all the data they were receiving with 
this infrastructure, they could also benefit from the changes if 
these were adopted by unlinking existing staging areas and the 
project databases from the FIRE LSF servers, thus ensuring 
all IOPS of those storage were only used by their internal 
processes. 

2) Load balancers and DNS alias 
Where possible, IP addresses and hostnames were 

replaced by the use of DNS aliases, which allowed services to 
be provided via a HAProxy load balancer. After monitoring 
the resultant traffic, the most used services (such as the 
metadata servers) were provisioned on virtual machines – 
leading to a total of 8 metadata servers on each data centre. 
The existing FUSE implementation already accepted multiple 
metadata servers, adding the load balancer ensured the 
stability of an already resilient capable solution.  

3) Containerized infrastructure set up 
With the experience acquired from the initial 

implementation of FIRE using Python, a decision was made 
to rewrite from scratch a new solution based on Java and 
Spring boot. Spring boot facilitates the containerization of 
Java applications, it is relatively simple to learn and forces a 
more rigid code structure than Python. 

4) CI/CD from Spring Boot to Kubernetes 
As the initial REST endpoints were being developed with 

Spring boot the first Kubernetes cluster was installed as a 
development environment, using 10 Virtual Machines (VM) 
with 6 CPU each and 16 GBs of RAM and minimal local disk 
to prevent its use for caching. Using an internal GitLab 
repository manager helped the FIRE team develop Continuous 
Integration pipelines which connected the local repositories of 
each developer with the development Kubernetes 
environment. Each developer was made responsible for 
creating unit and functional tests for every endpoint created, 
and mandatory code review ensured alignment of naming 
conventions and software practices. To ensure development 
continued while the users tested the first implementation of 

the REST API, a second cluster was created, this time in a 
different data centre, and configured as a Continuous 
Deployment step in the GitLab pipeline, ensuring that only 
code that had gone through the development environment ran 
on the test environment. The test cluster was provisioned on 
10 VMs with the same sizing as the development cluster, 
ensuring pod (groups of containers inside Kubernetes) sizing 
could be reused from the development cluster. 

Code coverage checks, and unit tests were automated, so 
that the initial container image was created and saved into the 
GitLab repository only if all those tests were passed. The 
resulting image will then be used, without being recreated, on 
each environment, forcing codebase alignment on all 
environments. This image reuse implies that the profiles used 
to run the container must handle the different configurations 
for each environment, since different databases and backend 
storage were used, but this also ensured that no configuration 
was embedded inside the codebase. 

While users were functionally testing the test environment 
and starting to integrate their own pipelines with it, the focus 
switched to deploying two production clusters, one on each 
publicly accessible data centre. These production clusters used 
6 physical servers each, with 64 CPU and 128G of RAM. 

A round robin (RR) DNS was configured over 6 IP 
addresses assigned to MetalLB [15] layer 2 configuration, 
with the aim to distribute traffic among the 6 bare-metal 
servers and applied to all environments for consistency, 
including development and testing environments. Since the 
users use the RR DNS 6 Kubernetes Traefik [16] services are 
run to ensure the 6 IPs (virtual IPs) are properly configured. 
With this configuration an unscheduled reboot of one of the 
servers triggers its virtual IP relocation to another server. 

5) Capacity planning and GDPR 
Inside EMBL-EBI one single team is responsible for 

providing service metrics to the end-user, ensuring GDPR 
regulations are followed. FIRE infrastructure uses a data 
centre-aware fluentd [17] configuration to send all logs to an 
existing syslog setup in each data centre. These are 
anonymized but provide a quantitative overview of data being 
uploaded to the system as well as data being downloaded. To 
ensure all logs are sent to the syslog servers an internal policy 
was defined for all containers to send their logs to the local 
output as Kubernetes allows fluentd to collect them on every 
node where they are generated and send them to syslog 
without need of controlling logs from the application layer.  

6) Scaling containerized services 
In the long-term FIRE should be maintainable by a small 

team and so the system needs to avoid unnecessary 
complexity. The original system scaled effectively by solving 
the problem of replicating data using only an LSF batch queue 
and that design has been translated to run using Kubernetes as 
the batch engine, aiming for the same simplicity. However, a 
relevant improvement has been the addition of a second subset 
of containers focused solely on reading data (i.e. no write 
actions), dividing the infrastructure into two services with the 
same codebase but with different database access. These two 
services are hidden from the users by the Traefik edge-router 
which publishes them and sends the specific requests to one 
or another service depending on the need of read or write on 
data. Both services span the same image inside Kubernetes, 
but are provisioned with different database configurations, 
relieving the central database of any read-related work since 



the read service pods can use the read-only disaster recovery 
databases. As previously discussed, EMBL-EBI’s general aim 
is to share its data with the world, and to support this, the 
connectivity with the outside world has recently been 
increased to 100Gbps Since this is expected to remove a 
current bottleneck for large-scale data transfers, the risk of 
greatly increased consumption of data having a negative 
impact on the ability to continue ingesting new data from 
inside the EMBL-EBI requires such mitigation measures.  

7) ‘On-time replication’ or ‘eventually replicated’ 
With the addition of the geo-dispersed storage as the 

primary replica the requirement of data centre failure 
resilience was already being fulfilled with one single copy of 
the data. Following agreement with all the existing users, data 
replication into OTA was reimplemented as an ‘eventually 
consistent’ mechanism. When using the FIRE API, the user 
will receive its archived object OID when successfully copied 
to the primary replica, and the secondary replica will be 
queued internally for FIRE to execute when possible.  

This ‘eventually consistent‘ property has several high 
impact benefits; the first of which is being able to do 
maintenance on the secondary replica without ingress service 
disruption. The second benefit is that the user receives the OID 
of the uploaded file faster than with the first implementation, 
since the first version required both copies to be validated for 
FIRE to provide the OID to the user, thus making that 
response as slow as the slowest of the two replicas – the tape. 
This also allows FIRE to ingress higher data volumes than 
OTA can handle for short periods. Finally, data only needs to 
be pulled from the staging area once, so half of the original 
read IOPs load on such staging areas is removed. 

8) Leveraging community standards and open source 
tools 

Since first presented in 2006, Amazon S3 has become a 
de-facto standard in the life sciences community, and so read-
only S3 support was built into the new FIRE API. This S3 
implementation adds an authentication layer to the previous 
fuse development. Leveraging already existing S3 clients 
(such as Goofys [18]) ensured the team was able to focus 
solely on the REST API, based on Java, instead of adding the 
requirement of learning another language, like C or Go for the 
API client. REST API development has been focused on 
industry standard software and infrastructure implementations 
for sustainability reasons. Open source tools now used include 
GitLab [19] (repositories contain application and 
infrastructure configuration), Foreman and Puppet [20] (to 
deploy and configure basic services), SaltStack [21] (to 
configure load balancers and Grafana dashboards) and 
Rundeck [22] ( to provide audit trail for cron jobs).  

III. DESIGN LESSONS AFTER 12 YEARS OF INTENSE USAGE AND 
CONTINUAL GROWTH 

From 2008 to 2012 the total data volume archived in FIRE 
was 1.4PB, which is approximately the volume archived 
during 2013 alone. Planning for such growth rate is 
remarkable, and while the yearly growth rate has seen some 
reduction the archived volume still grew by 42% during 2019, 
with an average of 750TB per month. In contrast, the average 
total data download from EMBL-EBI was in the region of 3PB 
per month. 

A. Bottlenecks do not disappear, they just move 
It is a fact that bottlenecks will appear when a service is 

being used with enough intensity and being able to identify 
such bottlenecks is key to being able to support continuous 
growth. Any time, or effort invested on any other part of the 
system may not show any immediate benefit. 

B. Cache reaching cost-benefit limits 
	Data provision via FUSE in the phase 1 implementation 

relied on an NFS cache to optimise file retrieval. Requested 
data was copied from slower, more resilient object storage to 
the FIRE cache before being returned to the user. This caching 
mechanism enabled FIRE to satisfy a high percentage of 
requests with extremely low latency as every subsequent 
request for the same data was retrieved from the cache. Over 
time both total data and user base increased resulting in the 
majority of cached data being expunged before a second 
request was received. The overhead of copying, monitoring 
and clearing the cache no longer provided any performance 
gain so was excluded from subsequent implementations of 
FIRE. 

C. Tape lifecycle 
When tape was introduced in 2015 as the secondary 

replica for some projects, the available tape generation was 
LTO-6; since then LTO-7 and LTO-8 have been made 
available with a new generation likely every two to three 
years, each time doubling in capacity. By 2018 all projects 
finished their secondary replica migration to tape, and by 2019 
the used tape bank consisted of around 10PB in each LTO 
generation, with a further 10PB stored in 3592-JD tapes. 

Read-write capacity is currently provided by 12 LTO 
drives in a Spectra Logic T950 with a further 3 IBM drives 
(3592-JD) installed in an IBM TS4500 library. The number of 
installed drives at any time was defined as that required to 
meet the throughput of FIRE when running optimally and this 
was only achievable by ensuring a constant input data stream. 
As previously noted, TAR (rather than the less performant 
LTFS) was used on a lustre buffer file system, to bundle 
enough files to into one single uncompressed file to fill a tape. 
Such a solution was felt to have better performance than any 
other but has the following drawbacks:  

• Only FIRE/OTA can use such drives and tapes 

• Migrating away from such a solution isn’t possible by 
just scanning the tapes 

• Recovering one single file requires recovering the full 
tape 

• It is not possible to migrate from LTO-N to LTO-N+1 
without recovering all tapes 

• The current setup provides few idle drives on average, 
that could be used for disaster recovery 

D. Sharing infrastructure with your clients 
The original database-API relied on infrastructure not 

under the full control of the FIRE team – the mounted 
filesystems from where the data were pulled and the databases 
where the user’s workflow stored the archiving 
instructions. The consequent requirement to liaise with each 
user team before making even minor changes convoluted 
maintenance and migration procedures. 



The following are lessons learned during the transition 
from the database API-based system to the REST API 
implementation. 

E. Early user involvement 
After several consultations with the technical leaderships 

of the biggest users, the first general design of the new REST 
API was shared with all the stakeholders for feedback. From 
these initial conversations a test environment was created and 
with it the feedback loop with our users started to help us rank 
our development priorities. Having at least one new team 
willing to archive data to FIRE via a new API, and without 
experience or infrastructure built around the existing database-
based API has had a very positive impact on the speed of 
development and feedback. As well as sometimes daily direct 
communications with user teams, a FIRE Users Group was 
used with all stakeholders for a quarterly validation of the new 
REST API project evolution.  

F. Measure, deploy, automate, test, repeat 
To ensure proper development speed any developer 

requires enough time to be focused on the task at hand, and 
before the move to extensive monitoring, code review and unit 
testing, any even apparently trivial code changes triggered 
sufficient numbers of user-reported errors to disturb 
development efforts. Reducing the reactive interruptions 
caused in this way required a proactive approach where all 
existing systems were redeployed from scratch and CI/CD 
was used to deploy the application on the LSF cluster, OTA 
servers, Kubernetes and all other servers. While gradually 
replacing all previous installations, daemon monitoring and 
logging housekeeping was introduced by default. To guard 
against inaccurate capacity planning the infrastructure was 
extended over Virtual Machines to ensure available capacity. 
After all of this, with fully automated deployments and 
configurations, extending the infrastructure became mundane 
work. 

G. Simplicity tends to be harder than expected, but is 
rewarded 
Not all developers understand the ‘legacy mindset’ which 

means that the next developer should have it easier than you. 
Making things simpler is not always simple. Ensuring that no 
niche knowledge was needed to maintain the infrastructure 
was important to ensure future maintainability.  

H. Naming conventions 
While it may appear a limited investment to name servers 

with a descriptive naming convention, it reduces the time 
invested in identifying servers and reduces human error. The 
same applies inside of the code by properly naming variables 
and using a review process to check your co-workers do the 
same. In the same way DNS aliases that help users to identify 
services and environments while allowing the system 
administrator to balance or move load at will have been a great 
benefit when preparing maintenance works, since moving a 
DNS alias allows maintenance work to be transparent to end 
users.  

IV. WORK IN PROGRESS 

A. Security needed to allow external access 
During 2020 and 2021 the project will implement a Role-

Based access control (RBAC) in order to provide users full 
control of who can access each file. The security 
implementation should allow users with certain roles to 

change the ownership and permissions of files inside the 
project they belong to. This activity will be done in agreement 
with the existing pipeline owners to ensure the minimum 
amount of disruption reaches the external users and data 
depositors. Part of this security effort is in response to the need 
for basic internal authentication and authorization for 
depositors to be allowed to push data directly into the FIRE 
archive. However, the ability to present our S3 data 
presentation directly to the outside world is also taken into 
account.  

B. Data centre-specific cache inside the REST API 
Work has started to gather statistics to inform sizing of an 

object store-based system for each data centre, aiming to 
reduce the traffic generated by the geo-dispersed nature of the 
current primary storage.  

C. Cloud and associated costs 
Legal and technical resources have been invested in 

finding a suitable method to provide access to data from public 
cloud tenancies. So far, all approaches to uploading public 
data to cloud providers have been solved by providing access 
from EMBL-EBI cloud infrastructures based on OpenStack or 
internal Kubernetes services. Our archivers require that any 
access to private and public data needs to be registered, 
gathering use statistics is necessary for reporting to funders, 
as well as identifying and understanding community interests 
over time.  

D. Opening tape access to other services 
The current tape libraries can only be used by FIRE, and 

its object storage presentation (written in Python2) has 
reached the point where it requires a refactoring from scratch. 
The OTA solution was created in-house because there were 
no reasonably priced appropriate products in the market at that 
time, and for the past years it has provided a great service. 
Having said that we are aiming to fully replace or refactor 
OTA. We have identified several potential object storage 
interfaces for our tape libraries and we are considering 
options. 

While the OTA performance (on write) may be higher than 
any LTFS based solution, the current solution is less efficient 
during read operations, which has implications for disaster 
recovery actions. In the long term, one has to consider the 
Recovery Time Objectives (RTO) in case of such a disaster 
recovery. Tape use has increased linearly with the amount of 
data being archived, increasing from 200TB to 1000TB each 
month, and this is pushing our OTA solution beyond its 
current disaster recovery capacity. There is a plan to extend 
tape access by adding more drives, to allow faster restore 
actions.  

If the expected yearly data growth continues, our project will 
reach the Exabyte milestone before 2030, and by then our 
solution will likely be very different from the current one. 
With the experience gathered over the last 12 years and the 
subsequent evolution of the FIRE software-defined storage 
implementation, it is clear that abstracting the service from 
the physical infrastructure where possible, assists in 
simplifying the implementation of future improvements 
while being transparent to users.  
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