

We gratefully acknowledge EMBL, UKRI LFCF and SPF and Chan Zuckerberg Initiative DAF, an advised fund of Silicon Valley Community Foundation

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

FIRE – A Dual Archive Service Provided By
EMBL-EBI Since 2008

Joan Marc Riera Duocastella
Technical Services Cluster

European Molecular Biology
Laboratory - European Bioinformatics

Institute (EMBL-EBI)
Hinxton Cambridge UK

marc.riera@ebi.ac.uk 0000-0002-0609-
0137

Guilherme Formaggio De Mello
Technical Services Cluster

European Molecular Biology
Laboratory - European Bioinformatics

Institute (EMBL-EBI)
Hinxton Cambridge UK

gfmello@ebi.ac.uk 0000-0002-9829-
091X

Stuart Meacham
Technical Services Cluster

European Molecular Biology
Laboratory - European Bioinformatics

Institute (EMBL-EBI)
Hinxton Cambridge UK

smeacham@ebi.ac.uk 0000-0002-3667-
6059

Steven Newhouse
Technical Services Cluster

European Molecular Biology
Laboratory - European Bioinformatics

Institute (EMBL-EBI)
Hinxton Cambridge UK

steven.newhouse@ebi.ac.uk 0000-
0003-1531-5198

Fahri Cihan Demirci
Technical Services Cluster

European Molecular Biology
Laboratory - European Bioinformatics

Institute (EMBL-EBI)
Hinxton Cambridge UK

fcdemirci@ebi.ac.uk 0000-0002-6229-
8709

Sarah Butcher
Technical Services Cluster

European Molecular Biology
Laboratory - European Bioinformatics

Institute (EMBL-EBI)
Hinxton Cambridge UK

sarahb@ebi.ac.uk 0000-0002-4494-
5124

Abstract— One of the European Bioinformatics Institute’s
core objectives is to provide long-lasting and freely available life
science data resources. In 2008, several of the fastest growing
data resources had reached 80TB and to support their continued
and accelerating growth, a software-defined File Replication
system (FIRE) was created. The system capacity has grown
from archiving 20TB a year in 2008 to 10PB a year in 2019, while
also providing access to almost all that data, to a constantly
growing research community, through permanent URLs.
Whilst the initial system relied on NFS storage to replicate its
data, it has transitioned in several stages to using tape systems
and geo-dispersed object storage, to support the continuous data
growth, which at current projections is expected to reach the
Exabyte milestone before 2030. The challenges faced by such a
system are introduced and the implementation changes during
different phases of the project are shared, together with the
lessons learned over the past 12 years while providing a
continually evolving system to the present day.

 Keywords—archive, tape, API, software-defined storage

I. INTRODUCTION
EMBL’s European Bioinformatics Institute (EMBL-EBI) is
the world’s leading sources of biological and biomolecular
data. Its core mission is to enable life science research and its
translation to medicine, agriculture, industry and society by
providing biological data, tools and knowledge. EMBL-EBI
is Part of the European Molecular Biology Laboratory
(EMBL), an open science intergovernmental organisation [1].
Since the EMBL-EBI opened in 1994, data volumes have
increased year on year and technology changes have driven a
huge increase in biological data diversity. By 2018, EMBL-
EBI was hosting over 40 different biomolecular databases,
with data content spanning genomic and metagenomic data
(DNA, RNA and protein) and structures as well as
proteomics, metabolomics, bioactive molecules,
macromolecular complexes, systems, pathways, ontologies,
scientific literature and light and electron microscopy
imaging data [2].

Data access and demand from the world’s researchers also
continues to increase significantly. In 2018 for example, the
average number of daily requests to EMBL-EBI websites
almost doubled from the previous year, to 64 million [3]. To
underpin these requirements, EMBL-EBI manages an
infrastructure of extensive, high-performance and high-
throughput compute infrastructure along with large data-
storage capacity [4]. The hardware is dispersed across three
discrete data centres in different geographical locations to
assure long-term security. The internal network has a 100
Gigabit backbone within its data centres and multiple
redundant 100 Gigabit connections between data centres and
to Janet, Internet2 and Geant (the UK, pan-American and pan-
European research networks, respectively).

A. Long term archives with specific needs
The world’s first public nucleotide sequence database: the

EMBL Nucleotide Sequence Data Library, now EMBL Bank,
part of the European Nucleotide Archive, was established in
1980 to be a central database of DNA sequences abstracted
from scientific literature as a resource for research. Demand
quickly grew and researchers began submitting data directly,
with the project evolving into a major database activity with
highly skilled informaticians managing the activity. To ensure
continued capacity for rapid growth and secure storage for
some of the most rapidly growing deposition databases at
EMBL-EBI a new storage solution FIRE - the File Replication
Service was conceived in 2008 and is still in use today. It
stores data for two of the largest archives at EMBL-EBI, ENA
and EGA, together with 3 smaller DNA-based archives and a
rapidly increasing new bio-image archive.

1) European Nucleotide Archive (ENA)
ENA provides a comprehensive record of the world's

nucleotide sequencing information, covering raw sequencing
data, sequence assembly information and functional
annotation. Data arrive at ENA from a variety of world-wide
sources. Access to ENA data in standard formats is provided
via a browser, through search tools, large scale file download

and via the API and embodies the FAIR Data Principles which
promotes published data to be Findable, Accessible,
Interoperable and Reusable [5]. Most data are fully public and
available for anonymous download, while a subset of new
datasets will be embargoed for a short time - only available to
selected authenticated people.

2) European Genome-phenome Archive (EGA)
The EGA is a service for permanent archiving and sharing

of all types of personally identifiable genetic and phenotypic
data resulting from biomedical research projects and data
access requires prior ethical agreement to be in place [6]. Data
are stored at rest encrypted and while access to EGA data is
provided using similar methods to ENA, but all data leaves
EMBL-EBI re-encrypted and requiring unique decryption
keys that only EGA can provide to the authorised individual.

B. Archive types and requirements
 Traditional computational storage archives may categorise
as follows:

• Cold archive - usually low-cost tape archive. Access is
not direct and requires some mechanical actions before
being online. Usually for Disaster Recovery (DR)
purposes.

• Active archive - also called storage tiering. When data
value or user interest is known, data are placed on the
most appropriate storage to maximize cost-benefit
between ease of user access and storage cost.

• Governance archive - driven by regulatory compliance
and/or a desire to be prepared for discovery in legal
proceedings, with stringent requirements and SLAs.
Vendor contracts tend to be complex and the user
experience is often an afterthought.

However, the long term archival requirements of ENA and
EGA, (as well as other EMBL-EBI archives), fall somewhere
in between these traditional archive categories, creating an
aggregate requirement to have two archives with one central
point of access; one archive being actively accessed; the other
providing a disaster recovery facility to guard our mandate to
store open data long term on behalf of worldwide
communities. Good practices require that there is no vendor
lock-in or single technology dependency on the solution used
to save and serve the data, mitigating the scenario in which
data archivers lose control and ownership of the data as a
result of changes to restrictive licensing and commercial
interests. Physical infrastructure risks are also taken into
account, requiring data to be replicated in distant locations, to
survive a disaster affecting any one of those locations. In the
case of ENA, this extends beyond EMBL-EBI holdings to
other International Nucleotide Sequence Database
Collaboration (INSDC) [7] partners. Thus, the chosen solution
needs to maintain two internal archives, while appearing as a
single unified interface to the users. Those same users, (e.g.
ENA and EGA), also require the presentation layer of the
archive to be POSIX [8] compliant, available from the EMBL-
EBI data centre compute clusters as well as usable to present
the data to the outside world through standard FTP and other
transfer protocols. As the archive is in constant use, high
availability is also a key requirement. In addition to being
resilient to hardware failure, the system also has to enable the
seamless addition of new back-end storage systems.

C. The challenge of predicting growth rates
At the end of 2008 the total size of ENA was in the region

of 100TB [9] and was growing at a rate of 200% each year. As
data are not generated locally and come from a huge range of
resources, forecasting growth rates has proven to be inexact.
At that time EGA was experiencing similar growth. As of the
end of 2019 the average growth in the past 10 years has been
around 90% (see Fig 1), with a 42% growth in 2019. With
other public archives starting to use FIRE the growth expected
for 2020, in terms of archived data, is around 55%, including
the organic growth of the existing archives.

D. Scaling egress
EMBL-EBI is a global hub for life science data, which

means that once data have been received, processed, and value
added (e.g. by addition of metadata, cross-references etc.),
data are made available for redistribution to the global life
science community. Since some institutions still download
copies of all the data published, and many thousands of
distinct individual data downloads occur every single day, it
can be expected that for every petabyte of data stored in FIRE,
many more petabytes of data download capacity will need to
be supported (i.e. every item of data will be downloaded more
than once during its lifetime).

E. Cost of ownership and predicting the long-term re-use
value of data
The nature of EMBL-EBI’s grant-based infrastructure

funding requires it to put out tenders for data centre space
every few years, potentially leading to regular physical
migration between locations. Reducing the downtime during
these transitions requires data to be accessible in more than
one place at once. Having data available (cold archive data are
not considered as available in this context) in at least two data
centres simultaneously forces the infrastructure to be
replicated with an associated increase in cost.

An alternative storage model for ‘active tiering’ – the
Hierarchical Storage Management (HSM) system is aimed at
reducing costs for an active archive, by transparently tiering
the data over several storage layers, each with different
performance and cost characteristics, moving the less
accessed data away from its original location into less
performant cheaper internal storage tiers, depending on usage
policies. However, implementing an HSM system efficiently
requires the ability to establish data access patterns. over a
long tail distribution, where data in the tail of the graph would
be moved to slower and cheaper storage systems. However, in
the case of life sciences data, ‘the long tail’ may in fact
represent the mainstream research [10].

The ‘value’ (and likelihood of access) of a particular
dataset cannot purely be predicted by its age in the archive
(e.g. last in first out) as value depends on scientific context
[11] and this can be changed by multiple factors. Some data
may gain interest at any point in time, with triggers as diverse
as newly developed tools, a virus outbreak, a publication, a
need to compare with a newly generated dataset. Datasets used
as reference data for particular analyses may continue to hold
interest for extended periods (e.g. the 1000Genomes dataset
[9]), leading to repeated downloads. Depending on the size of
the data and the number of downloaders, those triggers could
potentially pose a risk to the infrastructure. With new data
continually reaching the public domain and old data being
reused unpredictably an HSM solution was deemed
impractical and the approach chosen was to store data on a

Fig. 1. Growth of Data Projects in FIRE

spinning disk copy and ensure its continual availability via a
variety of file transfer protocols.

F. Storage lifecycle
Due to the long-term nature of the archive, many

publications reference datasets and files directly or through
specific archive proxies. To allow those links to remain valid
over the years, even as underlying storage changed, the
solution had to provide a lasting way to reach the archived
objects, while ensuring immutability of those objects.

II. FIRE, A DUAL ARCHIVE SERVICE PROVIDED BY
EMBL-EBI SINCE 2008

To summarise, EMBL-EBI needed a data archive solution
that would scale continuously over many years in line with the
data size; have high availability and resiliency; be abstracted
from the underlying hardware to prevent vendor lock-in and
disruption at the end of hardware lifecycles; be geo-dispersed
in at least two data centres, use a mix of storage types to
provide optimum user access, different technologies and cost-
benefit, and allow POSIX-compliant file presentation. To
fulfil these essential criteria, the File Replication Service
(FIRE) was designed and brought into production.

A. Phase 1 implementation- 2008 to 2018, when nothing
fits your needs
The FIRE project was started in 2008. At that time no

mature solution was identified that could ensure an affordable
Total Cost of Ownership (TCO) in the long run, so the EMBL-
EBI Systems and Networking Teams developed an automated
file replication mechanism that could be used by the biggest
EMBL-EBI public archives which were already struggling
with their growth and storage requirements. This solution is
now referred to as the phase 1 implementation.

1) Data access
To fulfil the requirement of a storage system usable by the

already existing pipelines and workflows, the team of that
time decided to ensure the solution could be presented with a
POSIX-compliant filesystem implementation. This FUSE
implementation required root access to the servers accessing
the data. This allowed a granular control on what data was
presented inside the EMBL-EBI, and by using that internal
presentation of data through already existing communication
protocols (i.e. FTP, Aspera, HTTP), leveraged the
authentication and authorization of those services obviating
the need to implement another layer of authentication on the
FIRE solution itself.

2) Archival process and shared ownership
Incoming data were uploaded to the EMBL-EBI

infrastructure using communication protocols such as FTP or
FASP (Aspera) and then enter a data-specific workflow of
validation, tagging and curation to ensure contents meet the
defined requirements. By the end of the workflow the archiver
issued archival actions in an database table inside a project-
specific database shared with the FIRE infrastructure.

Each data project also required the following FIRE
components:

• Python-based daemon scheduled to pull new archival
actions from the project-specific database. This
daemon inserted new FIRE actions in the internal
FIRE database. The daemon also created action
specific jobs in the FIRE owned batch processing
cluster based in LSF [12].

• Project-specific staging area isolating project specific
IO operations. The resulting absence of shared IOPS
among projects reduced the need for quality of service
mechanisms. The staging could be co-located
depending on each project workflow location and
mounted only by the FIRE LSF hosts in that data
centre.

• Although a specific LSF host was not required for each
project, an internal batch queue was, ensuring that LSF
actions would only be consumed by the hosts
mounting the staging areas from the same data centre,
preventing unnecessary cross-data centre traffic
wherever possible.

The LSF jobs processed the FIRE actions, represented by
a series of IO and metadata events, tracking each action with
different states. Once the FIRE actions finished the last steps
updated the internal FIRE database and the project database
and removed the archived file from the staging area when
necessary. In the event of a failure specific exit codes ensured
LSF resubmission.

3) Disaster recovery and data migration
 As seen in Fig 2 below, the phase 1 FIRE implementation
uses two different datastores (A and B) to store the same data.
To mitigate the risk of data being corrupted because of a
hardware or firmware failure, this data replication is done
using storage platforms from different vendors. To mitigate
the risk of data loss due major disasters the datastores are
located in different data centres. With this replication in place,
recovery from a disaster preventing data access to one of the
datastores requires replication of all data from the online
datastore to a newly installed datastore, thus restoring the
replication level to pre-disaster levels.

1) Breaking away from the hardware lifecycle
FIRE has been designed with the ability to copy data from

one datastore to another, for disaster recovery; however, this
ability is more often used to migrate data inside a datastore.
When a storage element needs to be retired data are moved
into the newly installed storage, and this transition is
transparent to users. To enable full control of the data and its
replica locations, FIRE provides an external file object
Identifier (OID) to the user, while managing the replicas of
that file individually with as many internal OIDs are needed
at any point in time. The external OID is fixed for the whole
live of the file, while the internal OIDs, usually one for each

datastore, change every time the file is moved to a new storage
element.

Fig. 2. Diagrammatic representation of FIRE – Phase 1 implementation
showing data flow

During the migration process, each file being migrated
gains one extra internal OID, the file will be copied and
validated from one of the existing replicas. The last step of the
process removes the old replica and its references to the
external OID thus ensuring no existing data consumer tracks
that data have physically moved.

B. Phase 2 - Cost reduction by Introduction of Tape-based
archive
Over time, the biggest data projects like ENA and EGA

showed location-specific access patterns (i.e. predominantly
one datacentre), allowing the non-accessed replica to be
moved into its own cold archive. An in-house Object Tape
Archive mechanism, known as OTA, was built, operating as
an object store onto which existing data for those specific
projects was migrated. This object store added some
complexity to the FIRE solution but reduced the total cost of
ownership for the overall solution due to the lower running
and maintenance costs of tape compared to spinning disks.

Tape requires data to be sent to it as a stream, and the
streaming rate needs to be sufficient to meet optimal
performance for the write operations. As it would be difficult
for the archives to control such a data stream, a buffer was put
in place. This comprised a 250TB lustre filesystem, where
data were written by the OTA object store endpoints and
internal mechanisms then bundled it before being sent to tape
using a single tar data stream. This move to tape brought one
important limitation. While the archival process, from FIRE
perspective, considered the data sent to OTA as replicated, it
would not be written to tape until the expected file resulting
from the tar operation would be big enough to fill at least 90%
of a tape.

Years after the initial implementation of OTA, all the
existing data projects were migrated, allowing the retirement

of all spinning disk on one of the replicas by replacing it by
OTA.

C. Phase 3 - Third data centre and geo-dispersed storage
During 2015, EMBL-EBI acquired a third data centre, and

FIRE was extended to deploy a 5PB Cleversafe geo-dispersed
object store. This had the effect that any data stored on such
object storage was locally fetchable by the bespoke FUSE
implementation, meaning that the POSIX compliant file
system was now available from all data centres, although only
two of them were publicly accessible. This geo-dispersed
storage was used from that point onwards as the back-end for
what from that point onwards we would call the primary (or
active) replica, with the secondary replica moved to the OTA
(tape) system which de facto is a cold archive inside the FIRE
active archive.

Geo-dispersed storage like Cleversafe or similar
implementations, have internal algorithms responsible for
distributing stored data over multiple data centres providing
resilience, and allowing data to be readable even if one of the
data centres is not available. This high availability mechanism
allows upgrades and scheduled maintenance execution
without disruption for the end user, while providing a
consistent presentation layer on all data centres. Object
storage also has the added benefit of using HTTP to read and
write the data, while the previous storage used required
mounting by the root user over NFS. The benefits of not
requiring a kernel-based module like NFS, are many and will
be discussed in the next sections.

Positive cost benefit analysis of the new IBM Cleversafe
geo-dispersed solution, led to the purchase of new geo-
dispersed storage to extend, and later replace, the first one.
This has become a regular procedure and today FIRE operates
on three Western Digital Activescale X100 systems (also
known as HGST) aggregating 40PB of usable space, and the
original Cleversafe has already been retired.

D. Phase 4 - 2017 to 2021 - Transition to standard REST
After the risk of loss of a data centre was mitigated by using
geo-dispersed object storage as the primary replica of all
existing archives, a decision was made to increase the
serviceability of the FIRE solution. Until this point, any new
user project for FIRE replication methodology required its
own staging area and project databases, which also required
bespoke development and infrastructure integration with their
pipelines. As the primary replica was already compatible with
the Amazon S3 REST application programming interface
(API) it was a logical step to offer similar REST API access
to users. With some users already requesting REST access to
FIRE, the impetus provided by two new funded large data
projects drove work on the creation of a new REST API.

1) Maintaining two infrastructures
With the expectation that transitioning research pipelines

from the existing database-based API to the new REST API
was likely to take more than one year, a new monitoring tool
was deployed for basic monitoring on all servers related to
FIRE. The Open Monitoring Distribution (OMD [13]) was
chosen as it leverages Check_mk [14] as the server agent and
monitors over 30 items by default, including CPU load, mount
points, and network interfaces. OMD provided a bird’s eye
view on the existing complex infrastructure, highlighting
several bottlenecks, and allowed the team to invest time in the

	1) User uploads data to 'Project staging area' through FTP or Aspera
2) Each project validates/prepares the uploaded files before they are
listed to be archived in the 'Project database'
3) 'FIRE daemon' detects new actions in the 'Project database' and will
create all necessary jobs and internal actions for each of them
4) 'FIRE LSF farm' will pull files from 'Project staging areas' and write
to both Data stores, A & B, and update the 'Project database' on
success
5) 'FIRE database' will contain and track all the actions and files

new infrastructure, while focusing only on relevant
maintenance of the existing infrastructure.

The original infrastructure included the following
components:

• 10 LSF servers in data centre A and 6 in data centre B.

• 2 servers providing access to the tape libraries (Spectra
T950 and IBM T4500)

• 14 Gbps Brocade SAN switch to connect the tape
libraries

• 1 Oracle database for FIRE and a standby in a second
data centre for DR

• 1 Oracle database for OTA and a standby in a second
data centre for DR

• 5 staging areas, one per data project, mounted by the
LSF servers of the same data centre

• 13 PB of data replicated in Object Store and tape

• 2 metadata servers for FUSE filesystem access on each
data centre

The new REST API particularly benefitted new users by
lowering the entrance barrier. While existing data project
users were able to archive all the data they were receiving with
this infrastructure, they could also benefit from the changes if
these were adopted by unlinking existing staging areas and the
project databases from the FIRE LSF servers, thus ensuring
all IOPS of those storage were only used by their internal
processes.

2) Load balancers and DNS alias
Where possible, IP addresses and hostnames were

replaced by the use of DNS aliases, which allowed services to
be provided via a HAProxy load balancer. After monitoring
the resultant traffic, the most used services (such as the
metadata servers) were provisioned on virtual machines –
leading to a total of 8 metadata servers on each data centre.
The existing FUSE implementation already accepted multiple
metadata servers, adding the load balancer ensured the
stability of an already resilient capable solution.

3) Containerized infrastructure set up
With the experience acquired from the initial

implementation of FIRE using Python, a decision was made
to rewrite from scratch a new solution based on Java and
Spring boot. Spring boot facilitates the containerization of
Java applications, it is relatively simple to learn and forces a
more rigid code structure than Python.

4) CI/CD from Spring Boot to Kubernetes
As the initial REST endpoints were being developed with

Spring boot the first Kubernetes cluster was installed as a
development environment, using 10 Virtual Machines (VM)
with 6 CPU each and 16 GBs of RAM and minimal local disk
to prevent its use for caching. Using an internal GitLab
repository manager helped the FIRE team develop Continuous
Integration pipelines which connected the local repositories of
each developer with the development Kubernetes
environment. Each developer was made responsible for
creating unit and functional tests for every endpoint created,
and mandatory code review ensured alignment of naming
conventions and software practices. To ensure development
continued while the users tested the first implementation of

the REST API, a second cluster was created, this time in a
different data centre, and configured as a Continuous
Deployment step in the GitLab pipeline, ensuring that only
code that had gone through the development environment ran
on the test environment. The test cluster was provisioned on
10 VMs with the same sizing as the development cluster,
ensuring pod (groups of containers inside Kubernetes) sizing
could be reused from the development cluster.

Code coverage checks, and unit tests were automated, so
that the initial container image was created and saved into the
GitLab repository only if all those tests were passed. The
resulting image will then be used, without being recreated, on
each environment, forcing codebase alignment on all
environments. This image reuse implies that the profiles used
to run the container must handle the different configurations
for each environment, since different databases and backend
storage were used, but this also ensured that no configuration
was embedded inside the codebase.

While users were functionally testing the test environment
and starting to integrate their own pipelines with it, the focus
switched to deploying two production clusters, one on each
publicly accessible data centre. These production clusters used
6 physical servers each, with 64 CPU and 128G of RAM.

A round robin (RR) DNS was configured over 6 IP
addresses assigned to MetalLB [15] layer 2 configuration,
with the aim to distribute traffic among the 6 bare-metal
servers and applied to all environments for consistency,
including development and testing environments. Since the
users use the RR DNS 6 Kubernetes Traefik [16] services are
run to ensure the 6 IPs (virtual IPs) are properly configured.
With this configuration an unscheduled reboot of one of the
servers triggers its virtual IP relocation to another server.

5) Capacity planning and GDPR
Inside EMBL-EBI one single team is responsible for

providing service metrics to the end-user, ensuring GDPR
regulations are followed. FIRE infrastructure uses a data
centre-aware fluentd [17] configuration to send all logs to an
existing syslog setup in each data centre. These are
anonymized but provide a quantitative overview of data being
uploaded to the system as well as data being downloaded. To
ensure all logs are sent to the syslog servers an internal policy
was defined for all containers to send their logs to the local
output as Kubernetes allows fluentd to collect them on every
node where they are generated and send them to syslog
without need of controlling logs from the application layer.

6) Scaling containerized services
In the long-term FIRE should be maintainable by a small

team and so the system needs to avoid unnecessary
complexity. The original system scaled effectively by solving
the problem of replicating data using only an LSF batch queue
and that design has been translated to run using Kubernetes as
the batch engine, aiming for the same simplicity. However, a
relevant improvement has been the addition of a second subset
of containers focused solely on reading data (i.e. no write
actions), dividing the infrastructure into two services with the
same codebase but with different database access. These two
services are hidden from the users by the Traefik edge-router
which publishes them and sends the specific requests to one
or another service depending on the need of read or write on
data. Both services span the same image inside Kubernetes,
but are provisioned with different database configurations,
relieving the central database of any read-related work since

the read service pods can use the read-only disaster recovery
databases. As previously discussed, EMBL-EBI’s general aim
is to share its data with the world, and to support this, the
connectivity with the outside world has recently been
increased to 100Gbps Since this is expected to remove a
current bottleneck for large-scale data transfers, the risk of
greatly increased consumption of data having a negative
impact on the ability to continue ingesting new data from
inside the EMBL-EBI requires such mitigation measures.

7) ‘On-time replication’ or ‘eventually replicated’
With the addition of the geo-dispersed storage as the

primary replica the requirement of data centre failure
resilience was already being fulfilled with one single copy of
the data. Following agreement with all the existing users, data
replication into OTA was reimplemented as an ‘eventually
consistent’ mechanism. When using the FIRE API, the user
will receive its archived object OID when successfully copied
to the primary replica, and the secondary replica will be
queued internally for FIRE to execute when possible.

This ‘eventually consistent‘ property has several high
impact benefits; the first of which is being able to do
maintenance on the secondary replica without ingress service
disruption. The second benefit is that the user receives the OID
of the uploaded file faster than with the first implementation,
since the first version required both copies to be validated for
FIRE to provide the OID to the user, thus making that
response as slow as the slowest of the two replicas – the tape.
This also allows FIRE to ingress higher data volumes than
OTA can handle for short periods. Finally, data only needs to
be pulled from the staging area once, so half of the original
read IOPs load on such staging areas is removed.

8) Leveraging community standards and open source
tools

Since first presented in 2006, Amazon S3 has become a
de-facto standard in the life sciences community, and so read-
only S3 support was built into the new FIRE API. This S3
implementation adds an authentication layer to the previous
fuse development. Leveraging already existing S3 clients
(such as Goofys [18]) ensured the team was able to focus
solely on the REST API, based on Java, instead of adding the
requirement of learning another language, like C or Go for the
API client. REST API development has been focused on
industry standard software and infrastructure implementations
for sustainability reasons. Open source tools now used include
GitLab [19] (repositories contain application and
infrastructure configuration), Foreman and Puppet [20] (to
deploy and configure basic services), SaltStack [21] (to
configure load balancers and Grafana dashboards) and
Rundeck [22] (to provide audit trail for cron jobs).

III. DESIGN LESSONS AFTER 12 YEARS OF INTENSE USAGE AND
CONTINUAL GROWTH

From 2008 to 2012 the total data volume archived in FIRE
was 1.4PB, which is approximately the volume archived
during 2013 alone. Planning for such growth rate is
remarkable, and while the yearly growth rate has seen some
reduction the archived volume still grew by 42% during 2019,
with an average of 750TB per month. In contrast, the average
total data download from EMBL-EBI was in the region of 3PB
per month.

A. Bottlenecks do not disappear, they just move
It is a fact that bottlenecks will appear when a service is

being used with enough intensity and being able to identify
such bottlenecks is key to being able to support continuous
growth. Any time, or effort invested on any other part of the
system may not show any immediate benefit.

B. Cache reaching cost-benefit limits
	Data provision via FUSE in the phase 1 implementation

relied on an NFS cache to optimise file retrieval. Requested
data was copied from slower, more resilient object storage to
the FIRE cache before being returned to the user. This caching
mechanism enabled FIRE to satisfy a high percentage of
requests with extremely low latency as every subsequent
request for the same data was retrieved from the cache. Over
time both total data and user base increased resulting in the
majority of cached data being expunged before a second
request was received. The overhead of copying, monitoring
and clearing the cache no longer provided any performance
gain so was excluded from subsequent implementations of
FIRE.

C. Tape lifecycle
When tape was introduced in 2015 as the secondary

replica for some projects, the available tape generation was
LTO-6; since then LTO-7 and LTO-8 have been made
available with a new generation likely every two to three
years, each time doubling in capacity. By 2018 all projects
finished their secondary replica migration to tape, and by 2019
the used tape bank consisted of around 10PB in each LTO
generation, with a further 10PB stored in 3592-JD tapes.

Read-write capacity is currently provided by 12 LTO
drives in a Spectra Logic T950 with a further 3 IBM drives
(3592-JD) installed in an IBM TS4500 library. The number of
installed drives at any time was defined as that required to
meet the throughput of FIRE when running optimally and this
was only achievable by ensuring a constant input data stream.
As previously noted, TAR (rather than the less performant
LTFS) was used on a lustre buffer file system, to bundle
enough files to into one single uncompressed file to fill a tape.
Such a solution was felt to have better performance than any
other but has the following drawbacks:

• Only FIRE/OTA can use such drives and tapes

• Migrating away from such a solution isn’t possible by
just scanning the tapes

• Recovering one single file requires recovering the full
tape

• It is not possible to migrate from LTO-N to LTO-N+1
without recovering all tapes

• The current setup provides few idle drives on average,
that could be used for disaster recovery

D. Sharing infrastructure with your clients
The original database-API relied on infrastructure not

under the full control of the FIRE team – the mounted
filesystems from where the data were pulled and the databases
where the user’s workflow stored the archiving
instructions. The consequent requirement to liaise with each
user team before making even minor changes convoluted
maintenance and migration procedures.

The following are lessons learned during the transition
from the database API-based system to the REST API
implementation.

E. Early user involvement
After several consultations with the technical leaderships

of the biggest users, the first general design of the new REST
API was shared with all the stakeholders for feedback. From
these initial conversations a test environment was created and
with it the feedback loop with our users started to help us rank
our development priorities. Having at least one new team
willing to archive data to FIRE via a new API, and without
experience or infrastructure built around the existing database-
based API has had a very positive impact on the speed of
development and feedback. As well as sometimes daily direct
communications with user teams, a FIRE Users Group was
used with all stakeholders for a quarterly validation of the new
REST API project evolution.

F. Measure, deploy, automate, test, repeat
To ensure proper development speed any developer

requires enough time to be focused on the task at hand, and
before the move to extensive monitoring, code review and unit
testing, any even apparently trivial code changes triggered
sufficient numbers of user-reported errors to disturb
development efforts. Reducing the reactive interruptions
caused in this way required a proactive approach where all
existing systems were redeployed from scratch and CI/CD
was used to deploy the application on the LSF cluster, OTA
servers, Kubernetes and all other servers. While gradually
replacing all previous installations, daemon monitoring and
logging housekeeping was introduced by default. To guard
against inaccurate capacity planning the infrastructure was
extended over Virtual Machines to ensure available capacity.
After all of this, with fully automated deployments and
configurations, extending the infrastructure became mundane
work.

G. Simplicity tends to be harder than expected, but is
rewarded
Not all developers understand the ‘legacy mindset’ which

means that the next developer should have it easier than you.
Making things simpler is not always simple. Ensuring that no
niche knowledge was needed to maintain the infrastructure
was important to ensure future maintainability.

H. Naming conventions
While it may appear a limited investment to name servers

with a descriptive naming convention, it reduces the time
invested in identifying servers and reduces human error. The
same applies inside of the code by properly naming variables
and using a review process to check your co-workers do the
same. In the same way DNS aliases that help users to identify
services and environments while allowing the system
administrator to balance or move load at will have been a great
benefit when preparing maintenance works, since moving a
DNS alias allows maintenance work to be transparent to end
users.

IV. WORK IN PROGRESS

A. Security needed to allow external access
During 2020 and 2021 the project will implement a Role-

Based access control (RBAC) in order to provide users full
control of who can access each file. The security
implementation should allow users with certain roles to

change the ownership and permissions of files inside the
project they belong to. This activity will be done in agreement
with the existing pipeline owners to ensure the minimum
amount of disruption reaches the external users and data
depositors. Part of this security effort is in response to the need
for basic internal authentication and authorization for
depositors to be allowed to push data directly into the FIRE
archive. However, the ability to present our S3 data
presentation directly to the outside world is also taken into
account.

B. Data centre-specific cache inside the REST API
Work has started to gather statistics to inform sizing of an

object store-based system for each data centre, aiming to
reduce the traffic generated by the geo-dispersed nature of the
current primary storage.

C. Cloud and associated costs
Legal and technical resources have been invested in

finding a suitable method to provide access to data from public
cloud tenancies. So far, all approaches to uploading public
data to cloud providers have been solved by providing access
from EMBL-EBI cloud infrastructures based on OpenStack or
internal Kubernetes services. Our archivers require that any
access to private and public data needs to be registered,
gathering use statistics is necessary for reporting to funders,
as well as identifying and understanding community interests
over time.

D. Opening tape access to other services
The current tape libraries can only be used by FIRE, and

its object storage presentation (written in Python2) has
reached the point where it requires a refactoring from scratch.
The OTA solution was created in-house because there were
no reasonably priced appropriate products in the market at that
time, and for the past years it has provided a great service.
Having said that we are aiming to fully replace or refactor
OTA. We have identified several potential object storage
interfaces for our tape libraries and we are considering
options.

While the OTA performance (on write) may be higher than
any LTFS based solution, the current solution is less efficient
during read operations, which has implications for disaster
recovery actions. In the long term, one has to consider the
Recovery Time Objectives (RTO) in case of such a disaster
recovery. Tape use has increased linearly with the amount of
data being archived, increasing from 200TB to 1000TB each
month, and this is pushing our OTA solution beyond its
current disaster recovery capacity. There is a plan to extend
tape access by adding more drives, to allow faster restore
actions.

If the expected yearly data growth continues, our project will
reach the Exabyte milestone before 2030, and by then our
solution will likely be very different from the current one.
With the experience gathered over the last 12 years and the
subsequent evolution of the FIRE software-defined storage
implementation, it is clear that abstracting the service from
the physical infrastructure where possible, assists in
simplifying the implementation of future improvements
while being transparent to users.

ACKNOWLEDGMENT
We gratefully acknowledge previous members of the

FIRE team for their work over many years; particularly Petteri

Jokinen, the original architect of FIRE and OTA, and also the
systems infrastructure and database teams for their help in
maintaining the FIRE networking, physical storage and
databases respectively. Finally, we would like to thank our
funders

REFERENCES

[1] EMBL-EBI Annual Report 2018 https://www.ebi.ac.uk/about/digital-
bookshelf/publications/EMBL-EBI_Scientific_Report-2018.pdf

[2] Vamathevan,J., Apweiler,R. and Birney,E. “Biomolecular data
resources: Bioinformatics infrastructure for biomedical data science.”
Annu. Rev. Biomed. Data Sci., 2, 2019, 199–222.

[3] Cook CE, Lopez R, Stroe O, et al. “The European Bioinformatics
Institute in 2018: tools, infrastructure and training.” Nucleic Acids
Research. 2019 Jan;47(D1):D15-D22. DOI: 10.1093/nar/gky1124K.

[4] Cook CE, Stroe O, Cochrane G, Birney E, Apweiler R. “The European
Bioinformatics Institute in 2020: building a global infrastructure of
interconnected data resources for the life sciences.” Nucleic Acids
Research. 2020 Jan;48(D1):D17-D23. DOI: 10.1093/nar/gkz1033R.

[5] Wilkinson M.D., Dumontier M., Aalbersberg I.J., Appleton G., Axton
M., Baak A, et al. The FAIR Guiding Principles for scientific data
management and stewardship. Scientific Data. 2016; 3:160018.

[6] Lappalainen I., Almeida-King J., Kumanduri V., Senf A., Spalding
J.D., Ur-Rehman S., et al. “The European Genome-phenome Archive
of human data consented for biomedical research.” Nat.
Genet. 2015; 47:692–695.

[7] Cochrane G., Karsch-Mizrachi I., Takagi T. “The International
Nucleotide Sequence Database Collaboration”. Nucleic Acids
Res. 2016; 44:D48–D50.

[8] IEEE and The Open Group
https://pubs.opengroup.org/onlinepubs/9699919799/ retrieved
10/02/2020.

[9] Cochrane, G., Akhtar, R., Bonfield, J., Bower, L., Demiralp, F.,
Faruque, N., et al. “Petabyte-scale innovations at the European
Nucleotide Archive.” Nucleic acids research, 37 (Database issue),
(2009). D19–D25. https://doi.org/10.1093/nar/gkn765

[10] Ferguson, A., Nielson, J., Cragin, M., Bandrowski, A. E & Martone,
M.E. “Big data from small data: data-sharing in the 'long tail' of
neuroscience.” Nat Neurosci 17, 1442–1447 (2014).
https://doi.org/10.1038/nn.3838.

[11] Pryor, G. “Multi-scale data sharing in the life sciences: Some lessons
for policy makers.” International Journal of Digital Curation, 4(3),
(2009). 71-82

[12] LSF Platform Load Sharing Facility [software] IBM
https://www.ibm.com/us-en/marketplace/hpc-workload-management

[13] Open Monitoring (OMD) [software] https://omdistro.org/
[14] Check_MK [software] https://checkmk.com/
[15] MetalLB [software] https://github.com/metallb/metallb
[16] Traefik The Cloud Native Edge Router [software] https://traefik.io
[17] Fluentd [software] https://www.fluentd.org
[18] Goofys. [software] https://github.com/kahing/goofys
[19] Gitlab [software] https://about.gitlab.com/
[20] Puppet [software] https://puppet.com/
[21] SaltStack [software] https://www.saltstack.com/
[22] RunDeck [software] https://www.rundeck.com/open-source

.

